|
|
!pip install -q transformers torch accelerate |
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
|
|
|
model_name = "distilgpt2" |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained(model_name).to(device) |
|
|
|
|
|
system_prompt = "You are ProTalk, a professional AI assistant. Answer politely, be witty, and remember the conversation context." |
|
|
|
|
|
chat_history = [] |
|
|
|
|
|
MAX_HISTORY = 6 |
|
|
|
|
|
while True: |
|
|
user_input = input("User: ") |
|
|
if user_input.lower() == "exit": |
|
|
break |
|
|
|
|
|
chat_history.append(f"User: {user_input}") |
|
|
|
|
|
relevant_history = chat_history[-MAX_HISTORY:] |
|
|
prompt = system_prompt + "\n" + "\n".join(relevant_history) + "\nProTalk:" |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
|
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=100, |
|
|
do_sample=True, |
|
|
temperature=0.7, |
|
|
top_p=0.9, |
|
|
repetition_penalty=1.2, |
|
|
pad_token_id=tokenizer.eos_token_id |
|
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
response = response.replace(prompt, "").strip() |
|
|
|
|
|
print(f"ProTalk: {response}") |
|
|
chat_history.append(f"ProTalk: {response}") |
|
|
|