- Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory Perception and expression of emotion are key factors to the success of dialogue systems or conversational agents. However, this problem has not been studied in large-scale conversation generation so far. In this paper, we propose Emotional Chatting Machine (ECM) that can generate appropriate responses not only in content (relevant and grammatical) but also in emotion (emotionally consistent). To the best of our knowledge, this is the first work that addresses the emotion factor in large-scale conversation generation. ECM addresses the factor using three new mechanisms that respectively (1) models the high-level abstraction of emotion expressions by embedding emotion categories, (2) captures the change of implicit internal emotion states, and (3) uses explicit emotion expressions with an external emotion vocabulary. Experiments show that the proposed model can generate responses appropriate not only in content but also in emotion. 5 authors · Apr 4, 2017
- Decoding Emotion in the Deep: A Systematic Study of How LLMs Represent, Retain, and Express Emotion Large Language Models (LLMs) are increasingly expected to navigate the nuances of human emotion. While research confirms that LLMs can simulate emotional intelligence, their internal emotional mechanisms remain largely unexplored. This paper investigates the latent emotional representations within modern LLMs by asking: how, where, and for how long is emotion encoded in their neural architecture? To address this, we introduce a novel, large-scale Reddit corpus of approximately 400,000 utterances, balanced across seven basic emotions through a multi-stage process of classification, rewriting, and synthetic generation. Using this dataset, we employ lightweight "probes" to read out information from the hidden layers of various Qwen3 and LLaMA models without altering their parameters. Our findings reveal that LLMs develop a surprisingly well-defined internal geometry of emotion, which sharpens with model scale and significantly outperforms zero-shot prompting. We demonstrate that this emotional signal is not a final-layer phenomenon but emerges early and peaks mid-network. Furthermore, the internal states are both malleable (they can be influenced by simple system prompts) and persistent, as the initial emotional tone remains detectable for hundreds of subsequent tokens. We contribute our dataset, an open-source probing toolkit, and a detailed map of the emotional landscape within LLMs, offering crucial insights for developing more transparent and aligned AI systems. The code and dataset are open-sourced. 2 authors · Oct 5, 2025
- LARA-Gen: Enabling Continuous Emotion Control for Music Generation Models via Latent Affective Representation Alignment Recent advances in text-to-music models have enabled coherent music generation from text prompts, yet fine-grained emotional control remains unresolved. We introduce LARA-Gen, a framework for continuous emotion control that aligns the internal hidden states with an external music understanding model through Latent Affective Representation Alignment (LARA), enabling effective training. In addition, we design an emotion control module based on a continuous valence-arousal space, disentangling emotional attributes from textual content and bypassing the bottlenecks of text-based prompting. Furthermore, we establish a benchmark with a curated test set and a robust Emotion Predictor, facilitating objective evaluation of emotional controllability in music generation. Extensive experiments demonstrate that LARA-Gen achieves continuous, fine-grained control of emotion and significantly outperforms baselines in both emotion adherence and music quality. Generated samples are available at https://nieeim.github.io/LARA-Gen/. 7 authors · Oct 7, 2025
4 Do LLMs "Feel"? Emotion Circuits Discovery and Control As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence. Mohamed Bin Zayed University of Artificial Intelligence · Oct 13, 2025 2
- CatFLW: Cat Facial Landmarks in the Wild Dataset Animal affective computing is a quickly growing field of research, where only recently first efforts to go beyond animal tracking into recognizing their internal states, such as pain and emotions, have emerged. In most mammals, facial expressions are an important channel for communicating information about these states. However, unlike the human domain, there is an acute lack of datasets that make automation of facial analysis of animals feasible. This paper aims to fill this gap by presenting a dataset called Cat Facial Landmarks in the Wild (CatFLW) which contains 2016 images of cat faces in different environments and conditions, annotated with 48 facial landmarks specifically chosen for their relationship with underlying musculature, and relevance to cat-specific facial Action Units (CatFACS). To the best of our knowledge, this dataset has the largest amount of cat facial landmarks available. In addition, we describe a semi-supervised (human-in-the-loop) method of annotating images with landmarks, used for creating this dataset, which significantly reduces the annotation time and could be used for creating similar datasets for other animals. The dataset is available on request. 4 authors · May 7, 2023