new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Decoding Emotion in the Deep: A Systematic Study of How LLMs Represent, Retain, and Express Emotion

Large Language Models (LLMs) are increasingly expected to navigate the nuances of human emotion. While research confirms that LLMs can simulate emotional intelligence, their internal emotional mechanisms remain largely unexplored. This paper investigates the latent emotional representations within modern LLMs by asking: how, where, and for how long is emotion encoded in their neural architecture? To address this, we introduce a novel, large-scale Reddit corpus of approximately 400,000 utterances, balanced across seven basic emotions through a multi-stage process of classification, rewriting, and synthetic generation. Using this dataset, we employ lightweight "probes" to read out information from the hidden layers of various Qwen3 and LLaMA models without altering their parameters. Our findings reveal that LLMs develop a surprisingly well-defined internal geometry of emotion, which sharpens with model scale and significantly outperforms zero-shot prompting. We demonstrate that this emotional signal is not a final-layer phenomenon but emerges early and peaks mid-network. Furthermore, the internal states are both malleable (they can be influenced by simple system prompts) and persistent, as the initial emotional tone remains detectable for hundreds of subsequent tokens. We contribute our dataset, an open-source probing toolkit, and a detailed map of the emotional landscape within LLMs, offering crucial insights for developing more transparent and aligned AI systems. The code and dataset are open-sourced.

  • 2 authors
·
Oct 5, 2025

Do LLMs "Feel"? Emotion Circuits Discovery and Control

As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence.