cnmoro commited on
Commit
27d3654
·
verified ·
1 Parent(s): 4fdbf02

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -72
README.md CHANGED
@@ -1,17 +1,14 @@
1
  ---
2
  library_name: model2vec
3
  license: mit
4
- model_name: finetuned_model2vec_nomic3d_passage_quantized_vocab_5k
5
  tags:
6
  - embeddings
7
  - static-embeddings
8
  - sentence-transformers
9
  ---
10
 
11
- # finetuned_model2vec_nomic3d_passage_quantized_vocab_5k Model Card
12
-
13
- This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of a Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. Model2Vec models are the smallest, fastest, and most performant static embedders available. The distilled models are up to 50 times smaller and 500 times faster than traditional Sentence Transformers.
14
-
15
 
16
  ## Installation
17
 
@@ -20,78 +17,12 @@ Install model2vec using pip:
20
  pip install model2vec
21
  ```
22
 
23
- ## Usage
24
-
25
- ### Using Model2Vec
26
-
27
- The [Model2Vec library](https://github.com/MinishLab/model2vec) is the fastest and most lightweight way to run Model2Vec models.
28
-
29
- Load this model using the `from_pretrained` method:
30
- ```python
31
- from model2vec import StaticModel
32
-
33
- # Load a pretrained Model2Vec model
34
- model = StaticModel.from_pretrained("finetuned_model2vec_nomic3d_passage_quantized_vocab_5k")
35
-
36
- # Compute text embeddings
37
- embeddings = model.encode(["Example sentence"])
38
- ```
39
-
40
- ### Using Sentence Transformers
41
-
42
- You can also use the [Sentence Transformers library](https://github.com/UKPLab/sentence-transformers) to load and use the model:
43
-
44
  ```python
45
  from sentence_transformers import SentenceTransformer
46
 
47
  # Load a pretrained Sentence Transformer model
48
- model = SentenceTransformer("finetuned_model2vec_nomic3d_passage_quantized_vocab_5k")
49
 
50
  # Compute text embeddings
51
  embeddings = model.encode(["Example sentence"])
52
  ```
53
-
54
- ### Distilling a Model2Vec model
55
-
56
- You can distill a Model2Vec model from a Sentence Transformer model using the `distill` method. First, install the `distill` extra with `pip install model2vec[distill]`. Then, run the following code:
57
-
58
- ```python
59
- from model2vec.distill import distill
60
-
61
- # Distill a Sentence Transformer model, in this case the BAAI/bge-base-en-v1.5 model
62
- m2v_model = distill(model_name="BAAI/bge-base-en-v1.5", pca_dims=256)
63
-
64
- # Save the model
65
- m2v_model.save_pretrained("m2v_model")
66
- ```
67
-
68
- ## How it works
69
-
70
- Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
71
-
72
- It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx). During inference, we simply take the mean of all token embeddings occurring in a sentence.
73
-
74
- ## Additional Resources
75
-
76
- - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
77
- - [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
78
- - [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
79
- - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
80
- - [Website](https://minishlab.github.io/)
81
-
82
-
83
- ## Library Authors
84
-
85
- Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
86
-
87
- ## Citation
88
-
89
- Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
90
- ```
91
- @article{minishlab2024model2vec,
92
- author = {Tulkens, Stephan and {van Dongen}, Thomas},
93
- title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
94
- year = {2024},
95
- url = {https://github.com/MinishLab/model2vec}
96
- }
97
- ```
 
1
  ---
2
  library_name: model2vec
3
  license: mit
4
+ model_name: cnmoro/low-dimension-static-model
5
  tags:
6
  - embeddings
7
  - static-embeddings
8
  - sentence-transformers
9
  ---
10
 
11
+ A low dimension static embedding model (3d) to be used as a text encoder in ML pipelines
 
 
 
12
 
13
  ## Installation
14
 
 
17
  pip install model2vec
18
  ```
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  ```python
21
  from sentence_transformers import SentenceTransformer
22
 
23
  # Load a pretrained Sentence Transformer model
24
+ model = SentenceTransformer("cnmoro/low-dimension-static-model")
25
 
26
  # Compute text embeddings
27
  embeddings = model.encode(["Example sentence"])
28
  ```